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DETERMINATION OF ATMOSPHERIC STRUCTURE FUNCTION

BY USING A SINGLE COHERENT DETECTOR

1. INTRODUCTION

Fried 1 has shown that atmospheric turbulence can impose severe restrictions

on the design of telescopes for optical heterodyne detection systems. The

atmospheric turbulence causes amplitude and phase fluctuations in the received

signal which limit the effective telescope aperture size. This limitation is

directly connected with the wave structure function and thus a knowledge of this

structure function becomes important.

Measurements of structure function have been proposed that use dual optical

systems and dual coherent detectors 2. Many times, however, the equipment

available is a laser heterodyne receiver which contains a single beam optical

system and a single coherent detector. In this paper we will describe and analyze

a technique for using the single beam laser receiver to measure the wave struc­

ture function.

The measurement procedure is as follows: first, mask the telescope aperture

with an opaque screen having two small holes, second, cover one hole and

measure the output of the laser receiver and, finally, measure the output of the

laser receiver with both holes uncovered. By repeating these two measurements

for different hole separations, one can simply determine the wave structure

function.
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II. LASER RECEIVER DESCRIPTION

A block diagram of the laser heterodyne receiver to be considered is shown in

Figure 1. The receiver consists of a telescope used to collect the incident signal.

The beam from the telescope is then beat with a local oscillator beam in a photo­

mixer. The output of the photomixer is then passed through an I.F. amplifier and

A.M. detected.

The collection aperture of the telescope is located in the plane AA' as shown in

Figure 1. The aperture is masked so that the incident signal can only enter

through two small holes. The signal from these two holes is then focussed on

the photomixer surface located in plane BB'. Concurrently, a local oscillator

beam is directed onto the surface of the photomixer by means of a beam splitter.

The photomixer which is shown in Figure 1, gives an output current which is

proportioned to the power incident upon its surface.· More quantitatively, we

have

Ip = Y f
p
lEp !2 ciA, y - constant (1)

where Ep is the total electric field on the surface and P is the surface area of

the photomixer. The output of the photomixer is followed by an I.F. amplifier.

This amplifier passes all frequencies on or near the beat frequency of the local

oscillator and the incoming signal. Other frequencies are rejected. The output

of the I.F. amplifier, i IF , is then A.M. detected. If we have

i IF (t ) = A(t) cos [6 w t + ¢ (t )J

where /.1,(0 is the beat frequency and, A (t) and ¢ (t) are slowly varying with

2

(2)



A I I I I I
•

I
•

T
E

L
E

S
C

O
P

E
A

P
E

R
T

U
R

E
M

A
S

K
B I I

B
E

A
M

I
S

P
L

IT
T

E
R

I
-

I I I
iI

F
(t

)

IN
C

ID
E

N
T

ip
(t

l
I

A
.M

.
id

(t
l

O
P

T
IC

A
L

P
H

O
T

O
-

I.
F

.
S

IG
N

A
L

S
Y

S
T

E
M

M
IX

E
R

A
M

P
.

D
E

T
E

C
-

TO
R

I I

-
I I I I I

O
P

T
IC

A
L

B
S

Y
S

T
E

M

I
~

I I
•

I I I

t
A

LA
S

E
R

L
O

C
A

L

R
E

C
E

IV
E

R
O

S
C

IL
L

A
T

O
R

F
ig

u
re

1



respect to 6w, then

CT - constant (3)

where i d is the output of the A.M. detector.

III. THEORETICAL ANALYSIS OF RECEIVER RESPONSE

We will now proceed with the theoretical analysis of the receiver input. The

analysis will be kept as general as possible in this and the next section; then, in

SectionV, certain simplifying assumptions will be made to make the experimental

measurement tractable. This procedure is useful since, if certain of the simpli-

fying assumptions are not met exactly, one can use the general formulation to

see how errors are introduced into the measurement.

We will now calculate the field due to the incident signal in the plane of the

photomixer. In Figure 2, we show a simplified drawing of the receiver optics

without including the local oscillator subsection. The plane z = 0 is the aperture

plane and corresponds to the plane AA' in Figure 1. It is an opaque plane with

two arbitrarily shaped holes in it. The plane z = zp is the plane of the photo­

mixer. The focusing and relaying optics are located between the aperture and

photomixer planes, however, they are not shown for simplification purposes.

If the opaque screen is illuminated by quasi-monochromatic light, E inc (E, t) ,

then the field in the detector plane, E s (E, t), is given by

where

(4)

p = x .!!x + Y.!!y'

4

= x/a +y'a
-x -y (5)
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and h (2, f!. ') is the two dimensional transfer junction from the z = 0 plane to the·

z = zp plane3
• We have adopted this general formulation since it is not neces-

sary at this point to specify h (E, £') in a more detailed manner. We should note

that h (E' E') also depends upon z p, however, this dependence has not been ex­

plicitly shown. The integration in Eq. (4) is an area integral over the two holes.

This has been shown symbolically by writing A l + A 2.

In the absence of turbulence, we will assume that a plane wave is normally in-

cident upon the aperture of the telescope, Le.,

E. (p t ) = A e j ( W s t + ¢)
inc -'

(6)

where A and :/J are constants. The effect of turbulence will be taken into account

by assuming that the amplitude and phase of the incident wave are distorted. The

incident field becomes

(7)

where the amplitude variation can be expressed in terms of the log-amplitude

function e(p, t) Le.,

(8)

Here As is the r.m.s. amplitude of As ([;. t). We have chosen to normalize As (,:::' t)

to As rather then to A since As is more accessible to measurement. The time

dependence of 1 and .j! is due to the relatively slow changes in the gross proper-

ties of the turbulence. The fact that these changes are slow compared with the

time constants of the optical waves is what allows us to use Eq. (4) which was

derived under monochromatic assumptions.

6



We will assume that the two holes in the opaque screen are small enough so that

e(fl.' t) and cP (e, t) are approximately constant across each hole. Now plugging

Eq. (7) into Eq. (4) and using the above assumptions, we obtain

where

and

M~ (EJ = As fA 1 h (~, £ ') d £ I

2

(10)

(11)

(12)

The field, E p , in the plane of the photomixer consists of the sum of the signal

field E s plus the oscillator field Eo , Le.,

(13)

It will be assumed that the local oscillator field in the plane of the photomixer is

given by

(14)

Here we have included a time dependence in cPo (t> t) to allow for the phase jitter

of the oscillator signal. If we now use Eq. (13) in Eq. (1) ,we have

(15)

7



where a bar over a symbol means the complex conjugate of that symbol. For

low noise heterodyne receivers, IEo I » IE s I ,therefore

(17)

Now plugging Eq. (9) and (14) in Eq. (17) giVes

(18)

where

(19)

and

Next we write B l(t) in polar form:
2

Bl(t) = IBl(t)1 ej"'~(t)
2 2

and use this expression in Eq. (18) to obtain

. (20)

(21)

Since the function B l (t), e1 (t), and cPl (t) vary slowly compared with /':,w, Eq. (21)
222

can be viewed as a sum of a dc term plus two amplitude and phase modulated

waves of frequency /':,w. Upon passing the signal through the LF., we just obtain

8



(22)

I- IB2 (t)\ ee 2 (t) cos [6wt + ¢2(t) + tf;2(t)J,

Next the I.F. signal goes into an A.M. detector which has been described in the

previous section by Eqs. (2) and (3).

In order to apply Eqs. (2) and (3) , we combine the cosines in Eq. (22). By using

this result, which is derived in Appendix A, we find

where

iIF(t) = A (t) cos [6wt + e (t)J (23)

The expression for e (t) is given in Appendix A but is not presented here since

e(t) information is lost in A.M. detection.

Now passing i IF (t) through the A.M. detector we find

(24a)

This signal is now amplified and recorded on tape for later processing.

It should be recalled that the measurement of the total structure function will

require not only a knowledge of the receiver output from the two hole aperture,

but also the output when one hole is covered. This result can readily be obtained

from Eq. (24) by setting B 1 = 0 or B2 = O.

9



IV. STATISTICAL CHARACTERIZATION OF INCIDENT WAVE

The transmitted beam becomes statistical in nature after passing through the

random or turbulent medium. As a result, the wave's log amplitude r U::) and

phase ¢ C~) become statistical quantities that must be described by probability

distributions or characterized by statistical moments. In the past experimental

and theoretical results have shown that under certain conditions rand ¢ obey

independent Gaussian statistics 4. This information can be used to calculate the

wave structure function by using Eq. (24) .

If we assume that the statistics of ¢(£) and r (e) are locally homogenous and

isotropic, then one can define the log-amplitude and phase structure functions as

(25)

and

In the above <u> is the ensemble average of u and r = IPI - P2 1 . The wave- -
structure function D (r) is then defined as

D (r) = Dr (r) + D¢(r)

Now squaring Eq. (24) and taking the ensemble average, we have

(26)

(27)

I B
1

1
2 <e 2 e1> + I B

2
1
2 < e 2 r2>

(28)

+ 2 IB1 \ IB2 1<e(r 1 +r 2 ) cos (¢1 - ¢2 + tj;1 - tj;2»

By using Fried's 1 results:

10



(29)

and

in Eq. (28) , we have

Therefore, we see that the mean square ensemble average of the A.M. detector

output is directly related to the wave structure function.

V. EXPERIMENTAL DETERMINATION OF STATISTICAL QUANTITIES

We will now use the results of the previous two sections to devise a method of

measurement of the wave structure function by using the output signal from the

A.M. detector.

As a first step, the output signal A (t) is sampled and <A2> is determined. We

would now like to use Eq. (31) to determine D(r) from <A2>, however, the

parameters I B 1\' IB21 and f 1 - f 2 are unknown. In order to simplify the

measurement, we will require that the laser receiver be designed so B 1 = B 2

B. Under these conditions, Eq. (31) reduces to

(32)

The measurement of D (r) can now be carried out as follows: first, cover one

hole in the opaque screen and measure the output of the A.M. detector. This

output will be denoted by Ai (t). We now sample Ai (t) and compute <A 1
2>. By

setting B 1 = 0 or B 2 = 0 in Eq. (31) we obtain

11



(33)

Next we measure the output of the A.M. detector with both holes open. Since we

already know IB I from Eq. (33) we can readily find D (r) from Eq. (32). Now

move the holes in the aperture mask so a new value of r is obtained and repeat

the above procedure.*

There are several optical arrangements which will make B 1 = B
2

• One par-

ticular arrangement which is fairly insensitive to design inaccuracies is as

follows:

1. Adjust the local oscillator beam so that its amplitude and phase are

constant across the photomixer surface P.

2. Require that the signal passing through the holes in the aperture mask

be focused in the plane of the photomixer.

3. Make the small holes in the mask circular and of the same radius.

4. Require that the diffraction pattern (Airy disc) from each hole be com-

pletely within the photomixer surface P.

5. Place the two circular holes so that they are an equal distance from the

center of the telescope collection aperture.

That conditions (1) - (5) produce B1 B2 is verified in Appendix B.

*The value of IB I will not have to be remeasured if the holes in the opaque screen are kept at a
constant distance from the center of the telescope aperture.

12



In addition to determining the total structure function, the above procedure can

also be used to determine the instantaneous phase difference if amplitude fluc­

tuations are negligible. Let us assume e1 = e2 = 0 and B 1 = B 2' Then Eq. (24)

becomes

A(t) = (2 IB I VI + cos 6 ¢ (t)

where

Again, by covering a hole, the value of IB I is obtained and then when used in

Eq. (34), the two hole measurement will yield the phase difference.

13
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APPENDIX A

We will now prove that two sinusoids with different amplitudes and phases can be

combined into one sinusoid, i.e.,

Q 1 cos (cut + 13 1 ) + Q 2 cos (cut + 132 ) = A cos (cut + e). (1A)

To show that the above is true and find A and e in terms of Ql and 131, we
2 2

rewrite the sinusoids on the left in their exponential form. Upon doing this, we

obtain

or

where

1 . 1 _ .
2" ye Jwt + 2" ye-Jwt = A cos (cut + e) (3A)

= (4A)

= (6A)

l-v I' = [ 2 + 2 + 2 (D 13 )]~I Q 1 Q 2 Q 1 Q 2 cos ,01 - 2

15
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< y (8A)

Since y = Iy I ej<y, we have

Iyj cos (wt + <y) = A cos (wt + e) (lOA)

A = Iy I e = <y+27Tn

16

n = 0, ± 1, ± 2, (llA)



APPENDIX B

We would now like to show that B 1 = B 2 , when conditions (1) - (5) of Section V

are satisfied. By rewriting this condition and by using the definition of B 1 and B
2

given in Eq. (19), we have

fn
M1(E)AO(£.)ej¢(p,t)d_P = fM (p)A (p)ej¢(P,t)dp: (IB)

n 2 - 0 - -

If we now assume the oscillator beam amplitude and phase are constant across

the photomixer surface, Eq. (IB) reduces to

(2B)

Next we assume the system is focused, i.e., zp = f where f is the focal length of

the system. Then the field in the photomixer plane is proportional to the Fourier

transform of the aperture field. Therefore h (.f!.' .f!. '), given by Eq. (3), is

k I

- j - p' (p - 2 P )= (J" e 2f - - - (J" - - (3B)

and then using Eq. (3B) in Eq. (10), we obtain

where

k
= A -jTIp2

s (J" e f
k I

+j-f P ' Pe - - dp'
A -1

2

(4B)

p = 1.f!.1.

If we now assume the holes are circular holes of radius a with centers located

at £1 and £.2' Eq. (4B) becomes

17



where

= As 0- e - j h p 2 fPa(£ I - PI) e + J ~P "E d P I

-2
(5B)

(6B)

and the integral is over the whole £' plane.* If we make the change of variable

p" == £' - PI , Eq. (5B) becomes
-2

k [p2 ] f k II

M1( ) - -A -jf 2-j}"!3.J P ( ") +jfP"P d I

2
P -. o-e 2 ... pep_ s a _

(7B)

Performing the two dimensional integral in cylindrical coordinates, we obtain 5

where

(8B)

f (p) = k a f 0­

7Tp (
ka p )

J 1 2f
k

_j - p2
e 2f (9B)

and J 1 (z) is the Bessel function of first order. Now using Eq. (8B) in Eq. (2B),

we obtain

(lOB)

If we now assume that the diffraction patterns of the circular holes, f (p) lie

completely within P, then Eq. (lOB) is unchanged if we extend the integration

limits to infinity. Doing this (lOB) becomes

*Whenever integ~ation limits are not specified, the limits should be taken are infinite.

18



f
k

+j-P'Pl
f (p) e f - - dE =

Now introducing cylindrical coordinates

f + j ~ P . P2
e - - f(p)dE (lIB)

x = p cos e Xl = PI cos el
2 2 2

Y = P sin e YI = PI sin e I
2 2 2

into Eq. (lIB), we have

lo
CO f27T +j ~ P PIC 0 S (e - e1)

e f(p)pdpde
o

(12B)

=

By using the integral representation for the Bessel function 5

. f 27T
2-rr Jo(a) = 0 e+ j acos (e--n de

the angular integration in (13B) can be performed. The result is

We see if PI ::: P2' the two integrals will be equal and as a result

19
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